ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

Anastasia Zhukova, Felix Hamborg, Bela Gipp

2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2021) 30 September 2021

Introduction

- Named entity recognition (NER) is a well-known NLP task.
- NER datasets contain general categories, e.g., person, location, time, etc.

Problems

- 1. General NER reflects no categories of the other domains, e.g., technology, production
- 2. A small number of NLP datasets for German, i.e., a low-resources language
- 3. Domain NER requires annotating a dataset for training a NER model

 \rightarrow a very time-consuming task

Goal

• Minimize the time of creating a domain dataset for NER in German by automating the annotation process

How to use knowledge graphs (e.g., Wiktionary) to automatically

- 1. extract domain terms (nouns),
- 2. derive entity categories,
- 3. annotate these terms into categories?

Domain graph

German compound nouns

<u>Sechszylindermotor</u> (six-cylinder motor) = sechs + Zylinder + <u>Motor</u>

A Wiktionary page (WP) matches "Motor":

[1] Abluftmotor, Abtriebsmotor, Aluminiummotor, Antriebsmotor, Außenbordmotor, Austauschmotor, Automotor, Backbordmotor,

→ Use the NPs that were mapped to Wiktionary pages

Domain graph

Zhukova et al. "ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts"

BERGISCHE UNIVERSITÄT WUPPERTAL

ANEA

Candidate Entity Categories

fastText represents well out-of-vocabulary terms and labels

The quality metric:

$$Q_i = T_i \cdot L_i \cdot O_i \cdot \max(\log_2 |EC_i|, 1) \cdot d_{avg_i}$$

 $\begin{array}{l} T_i \text{ is a mean cross-term cosine similarity} \\ L_i \text{ is a mean label-terms cosine similarity} \\ O_i = T_i + L_i \text{ is an overall similarity} \\ |EC_i| \text{ is a number of terms in an entity category} \\ d_{avg_i} \text{ is an average of non-zero distances between terms and} \\ & a \text{ label} \end{array}$

1. Candidate filtering

- 1) a mean cross-term similarity too small $(T_i < 0.2)$
- 2) a mean label-terms similarity too small

 $(L_i < 0.3)$

- 3) EC is too broad (contains > 15% of all termsto- annotate)
- 4) EC is too narrow (contains < 5 terms)

2. Resolution of full overlaps

When containing same terms, keep an EC_i with the largest Q_i

3. Resolution of the substantial overlaps When terms overlap \geq 50%, keep a big EC_i that is a best replacement to a small EC_i and to itself

4. Resolution of the conflicting terms Resolve the conflicting terms to "clean" candidate EC_i with the highest overall similarity O_i

 $\begin{array}{l} \mathsf{f} \rightarrow S_F \! > \! S_C \rightarrow \mathsf{F} \\ \mathsf{g} \rightarrow S_F \! > S_C \rightarrow \mathsf{F} \\ \mathsf{i} \rightarrow S_F \! > \! S_C \rightarrow \mathsf{F} \end{array}$

Evaluation

Evaluation: User study

No German domain-specific dataset available \rightarrow

performed a user study to evaluate the results

- *4 datasets*: processing industry, software development, databases, and travelling
- 9 native German study participants: 4 f, 5 m, aged between 23-60
- 2-4 evaluators per dataset
- *4 various configurations* per dataset: different number of terms-to-annotate
- 2 methods: ANEA and a hierarchical clustering baseline

Tasks

1) Evaluate *cross-term relatedness* within a category:

0-9 where 9 is the best

2) Evaluate *relatedness of a label to terms* in a category: 0-9 where 9 is the best

- *Distribution* of the relatedness scores between the datasets *differ*.
- The most frequent score per dataset is used as *thresholds* for *creating silver datasets*.

Dataset	Databases	Software development	Traveling	Processing	
All words	8161	8581	6293	7984	
Terms	1209	1041	1040	552	
Heads	713	673	801	328	
Assessors	3	3	2	4	
Cross-term relatedness	0 7 9	0 6.5 9	0 89	⁰ 6.5 ⁹	
Label-terms relatedness		0 9		0 9	

Silver datasets are required to compare configurations of ANEA against it.

- Silver dataset
- Hierarchical clustering
 - A baseline for terms relatedness
- ANEA
- ANEA voting
 - A final result is derived in an ensemble/voting strategy of multiple ANEA configurations

Results

Торіс	Method	# terms-to-	• # entity	# annotated	ECs' average	Term	Label	Average
		annotate	categories (ECs)	terms	size	similarity	similarity	similarity
Databases	silver	420	5	113	23	7.2	7	7.2
	HC	253	8	52	7	7.2		7.2*
	ANEA	253	18	179	10	5.7	5	5.4
	ANEA voting	253-316	12	122	10	6.3	5.9	<u>6.1</u>
Software dev.	silver	356	6	57	10	6.2	6	6.1
	HC	303	15	152	10	5.5		5.5*
	ANEA	191	10	119	12	5	5.3	5.2
	ANEA voting	191-255	4	44	11	5.6	6.5	<u>6.0</u>
Traveling	silver	363	6	115	19	7.8	6.7	7.3
	HC	363	19	156	8	7.3		7.3*
	ANEA	363	22	239	11	5.4	4.8	5.1
	ANEA voting	258-363	12	146	12	6.2	5.6	<u>5.9</u>
Processing	silver	282	7	102	15	6.6	6.2	6.4
	HC	183	7	56	8	6.1		6.1*
	ANEA	227	16	172	11	5.3	4.9	5.1
	ANEA voting	181-282	9	157	17	5.7	5.6	<u>5.6</u>

ANEA voting shows improvement of 13-15% to the original ANEA average similarity scores.

ANEA summary

- ANEA hasn't achieved the relatedness scores of the silver datasets yet.
- The voting strategy shows a significant improvement to the ANEA results

Recommended configurations for ANEA with voting: 1) y = 158 + 0.167x2) y + 50

3) *y* – 50

where x is a number of unique heads among the terms to annotate and y is a number of terms-to-annotate by ANEA

Conclusion

- Proposed ANEA, i.e., an **unsupervised approach** for automated creation of a small dataset for **domain-specific NER.**
- Evaluated ANEA with a user study on **four domain datasets**.
- The produced entity categories **required less than one hour**, which is significantly **faster than manual annotation**.
- The produced entity categories are slightly worse than the silver datasets but a voting strategy improves the scores by 13-15%.

A suggested use case with using ANEA:

- (1) annotate a small dataset,
- (2) validate and improve the dataset with manual inspection,
- (3) use the produced dataset in a semi-supervised or transfer learning

Anastasia Zhukova zhukova@uni-wuppertal.de

